Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 6(10): e453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36254336

RESUMO

The composition of proanthocyanidins in the testa (seed coat) of bread wheat was analyzed by thiolysis of PA oligomers from developing grain and found to consist of (+)-catechin monomers, with a small amount of (+)-gallocatechin. The average chain length of soluble PA stayed relatively constant between 10 and 20 days post-anthesis, whereas that of unextractable PA increased over the same period, suggesting that increases in chain length might account for the insolubility of PAs from mature wheat grain. We carried out RNA-Seq followed by differential expression analysis from dissected tissues of developing grain from red- and white-grained near-isogenic lines differing in the presence of an active R gene that encodes a MYB transcription factor involved in control of PA biosynthesis. In addition to genes already identified encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and dihydroxyflavonoid 4-reductase, we showed that wheat genes encoding phenylalanine ammonia lyase, flavonoid 3',5'-hydroxylase, leucoanthocyanidin reductase, and a glutathione S-transferase (the orthologue of maize Bronze-2) were more highly expressed in the red NIL. We also identified candidate orthologues of other catalytic and regulatory components of flavonoid biosynthesis in wheat.

2.
BMC Plant Biol ; 15: 130, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26044828

RESUMO

BACKGROUND: The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. RESULTS: The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1ß-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. CONCLUSIONS: The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD enzymes of the GA pathway in wheat and barley will provide the basis for a better understanding of GA-regulated development in these species. This analysis revealed the existence of a novel, endosperm-specific GA 1-oxidase in wheat and a related GA 3,18-dihydroxylase enzyme in barley that may play important roles during grain expansion and development.


Assuntos
Vias Biossintéticas/genética , Genes de Plantas , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Família Multigênica , Poaceae/enzimologia , Poaceae/genética , Biocatálise , Brachypodium/enzimologia , Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Hordeum/enzimologia , Hordeum/genética , Oryza/enzimologia , Oryza/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Triticum/enzimologia , Triticum/genética
3.
Plant Physiol ; 157(4): 1820-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22013218

RESUMO

The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.


Assuntos
Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Poliploidia , RNA Mensageiro/genética , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
J Exp Bot ; 57(14): 3901-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17032728

RESUMO

Many insect and fungal pathogens posing agronomically important threats specifically target the roots in strawberry. The use of a root-specific promoter to confer expression of resistance genes in a targeted manner has the potential appreciably to benefit the genetic improvement of commercial strawberry varieties. A novel gene, FaRB7, was isolated from strawberry (Fragariaxananassa Duch.) and found to contain motifs characteristic of tonoplast intrinsic proteins (TIPs). Phylogenetic analysis revealed that FaRB7 represents an RB7-type TIP. In strawberry, this gene is expressed predominantly in roots, with very low expression in petioles. A 2.843 kb region representing the FaRB7 gene upstream regulatory sequence was isolated and found to share a number of sequence motifs with the promoter of the Nicotiana tabacum TobRB7 root-specific RB7-type TIP. When cloned upstream of the gusA reporter gene and introduced into strawberry plants, the FaRB7 promoter was shown to direct strong, near root-specific expression with expression patterns very similar to that of the endogenous gene. Furthermore, the FaRB7 promoter was found to confer constitutive expression, comparable to that produced by the cauliflower mosaic virus (CaMV) 35S RNA promoter, in tobacco. Thus, the FaRB7 promoter may be used to achieve near-root-specific transgene expression in strawberry and also represents an alternative to the CaMV 35S promoter for producing constitutive foreign gene expression in heterologous hosts. The FaRB7 full-length genomic sequence and 5' upstream regulatory region have been submitted to the EMBL/GenBank database under accession number DQ178022.


Assuntos
Fragaria/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Fragaria/anatomia & histologia , Fragaria/metabolismo , Genes Reporter , Glucuronidase/análise , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/análise , Nicotiana/genética
5.
Plant Cell ; 17(1): 37-51, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15598801

RESUMO

Recently, an S haplotype-specific F-box (SFB) gene has been proposed as a candidate for the pollen-S specificity gene of RNase-mediated gametophytic self-incompatibility in Prunus (Rosaceae). We have examined two pollen-part mutant haplotypes of sweet cherry (Prunus avium). Both were found to retain the S-RNase, which determines stylar specificity, but one (S3' in JI 2434) has a deletion including the haplotype-specific SFB gene, and the other (S4' in JI 2420) has a frame-shift mutation of the haplotype-specific SFB gene, causing amino acid substitutions and premature termination of the protein. The loss or significant alteration of this highly polymorphic gene and the concomitant loss of pollen self-incompatibility function provides compelling evidence that the SFB gene encodes the pollen specificity component of self-incompatibility in Prunus. These loss-of-function mutations are inconsistent with SFB being the inactivator of non-self S-RNases and indicate the presence of a general inactivation mechanism, with SFB conferring specificity by protecting self S-RNases from inactivation.


Assuntos
Motivos F-Box/genética , Deleção de Genes , Mutação/genética , Pólen/genética , Prunus/genética , Reprodução Assexuada/genética , Substituição de Aminoácidos/genética , Códon sem Sentido/genética , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Haplótipos/genética , Dados de Sequência Molecular , Ribonucleases/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Elementos Silenciadores Transcricionais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...